Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Immunol ; 14: 1158951, 2023.
Article in English | MEDLINE | ID: covidwho-2323313

ABSTRACT

Introduction: Acute respiratory distress syndrome and acute lung injury (ARDS/ALI) still lack a recognized diagnostic test and pharmacologic treatments that target the underlying pathology. Methods: To explore the sensitive non-invasive biomarkers associated with pathological changes in the lung of direct ARDS/ALI, we performed an integrative proteomic analysis of lung and blood samples from lipopolysaccharide (LPS)-induced ARDS mice and COVID-19-related ARDS patients. The common differentially expressed proteins (DEPs) were identified based on combined proteomic analysis of serum and lung samples in direct ARDS mice model. The clinical value of the common DEPs was validated in lung and plasma proteomics in cases of COVID-19-related ARDS. Results: We identified 368 DEPs in serum and 504 in lung samples from LPS-induced ARDS mice. Gene ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEPs in lung tissues were primarily enriched in pathways, including IL-17 and B cell receptor signaling pathways, and the response to stimuli. In contrast, DEPs in the serum were mostly involved in metabolic pathways and cellular processes. Through network analysis of protein-protein interactions (PPI), we identified diverse clusters of DEPs in the lung and serum samples. We further identified 50 commonly upregulated and 10 commonly downregulated DEPs in the lung and serum samples. Internal validation with a parallel-reacted monitor (PRM) and external validation in the Gene Expression Omnibus (GEO) datasets further showed these confirmed DEPs. We then validated these proteins in the proteomics of patients with ARDS and identified six proteins (HP, LTA4H, S100A9, SAA1, SAA2, and SERPINA3) with good clinical diagnostic and prognostic value. Discussion: These proteins can be viewed as sensitive and non-invasive biomarkers associated with lung pathological changes in the blood and could potentially serve as targets for the early detection and treatment of direct ARDS especially in hyperinflammatory subphenotype.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Mice , Animals , Lipopolysaccharides/metabolism , Proteomics , COVID-19/pathology , Lung/pathology , Respiratory Distress Syndrome/pathology , Biomarkers/metabolism
2.
China Tropical Medicine ; 23(1):39-43, 2023.
Article in Chinese | GIM | ID: covidwho-2270127

ABSTRACT

Objective: To find out the existing problems and provide reference for further improving the quality of report information by analyzing the report cards of COVID-19 and the positive report cards of primary screening reported in Ningxia. Methods All COVID-19 case cards from 2020 to 2021 and initial screening positive cards were derived from the Chinese Information System for Disease Control and Prevention according to final review date. The timeliness of case reporting, timeliness of case review, completeness and accuracy of the case cards were analyzed. Results In Ningxia, the first case of COVID-19 was reported on January 20, 2020, and as of December 31, 2021, 122 confirmed cases and 4 symptomatic infected cases were reported. In 2021, the timely reporting rate of COVID-19 was 98.00%, which increased by 8.24% compared with 2020 (90.54%). Compared with 2020, the average time limit for diagnosis to reporting of COVID-19 in 2021 was shortened by 83.12%;in 2021, the timely review rate of COVID-19 was 100.00%, which increased by 13.84% compared with 2020 (87.84%). Compared with 2020, the time from reporting to final review was shortened by 98.91%. In 2021, the timely rate of positive reports in COVID-19 in Ningxia was 90.00%, among which the timely rate of reports by county (district) nucleic acid detection institutions was the highest (92.31%), followed by municipal (91.67%) and autonomous region (81.82%). Conclusions At the beginning of the epidemic in 2020, the timeliness of COVID-19 in Ningxia was poor, and through the implementation of measures such as technical training, supervision and inspection to continuously optimize the staffing of medical institutions and disease control institutions, the timeliness of reporting COVID-19 in Ningxia in 2021 was substantially improved, but there were still some weak links. In the future work, technical guidance and training should be carried out for weak links, and efforts should be made to improve the quality of reports.

3.
Front Med ; 2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2236795

ABSTRACT

Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

4.
J Med Virol ; 95(1): e28380, 2023 01.
Article in English | MEDLINE | ID: covidwho-2148396

ABSTRACT

Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+  monofunctional, IFN-γ+ TNF-α+  bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Humans , East Asian People , Interleukin-2 , Pandemics , Prospective Studies , Tumor Necrosis Factor-alpha , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunity, Cellular , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral , Immunity, Humoral
5.
Disease Surveillance ; 37(9):1192-1197, 2022.
Article in Chinese | GIM | ID: covidwho-2143864

ABSTRACT

Objective: To understand the molecular epidemiological characteristics of COVID-19 in Ningxia, and provide evidence for the surveillance, prevention and control of COVID-19.

6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2124777

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for COVID-19, has caused an ongoing worldwide pandemic. Due to the rapid emergence of variants of concern (VOCs), novel vaccines and vaccination strategies are urgently needed. We developed an intranasal vaccine consisting of the SARS-CoV-2 receptor binding domain (RBD) fused to the antibody Fc fragment (RBD-Fc). RBD-Fc could induce strong humoral immune responses via intranasal vaccination. Notably, this immunogen could efficiently induce IgG and IgA and establish mucosal immunity in the respiratory tract. The induced antibodies could efficiently neutralize wild-type SARS-CoV-2 and currently identified SARS-CoV-2 VOCs, including the Omicron variant. In a mouse model, intranasal immunization could provide complete protection against a lethal SARS-CoV-2 challenge. Unfortunately, the limitation of our study is the small number of animals used in the immune response analysis. Our results suggest that recombinant RBD-Fc delivered via intranasal vaccination has considerable potential as a mucosal vaccine that may reduce the risk of SARS-CoV-2 infection.

7.
Front Immunol ; 13: 947724, 2022.
Article in English | MEDLINE | ID: covidwho-2141980

ABSTRACT

Background: Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods: COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results: The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion: The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.


Subject(s)
Asthma , COVID-19 , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Survivors
8.
Signal Transduct Target Ther ; 7(1): 301, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016658

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still rapidly spreading worldwide. Many drugs and vaccines have been approved for clinical use show efficacy in the treatment and prevention of SARS-CoV-2 infections. However, the emergence of SARS-CoV-2 variants of concern (VOCs), such as Delta (B.1.617.2) and the recently emerged Omicron (B.1.1.529), has seriously challenged the application of current therapeutics. Therefore, there is still a pressing need for identification of new broad-spectrum antivirals. Here, we further characterized a human antibody (58G6), which we previously isolated from a patient, with a broadly authentic virus-neutralizing activity that inhibits the Delta and Omicron variants with half-maximal inhibitory concentrations (IC50) of 1.69 ng/ml and 54.31 ng/ml, respectively. 58G6 shows prophylactic and therapeutic efficacy in hamsters challenged with the Delta and Omicron variants through nasal delivery. Notably, a very low dosage (2 mg/kg daily) of 58G6 efficiently prevented Omicron variant replication in the lungs. These advantages may overcome the efficacy limitation of currently approved neutralizing antibodies that can be administered only by intravenous injection. In general, 58G6 is a promising prophylactic and therapeutic candidate against current circulating VOCs and even future emerging mutants. To the best of our knowledge, 58G6 is one of the most potent neutralizing antibodies against Omicron, with a broader spectrum than those approved for clinical use. 58G6 could be developed as a nebulized therapy, which would be more cost effective and user friendly and enhance the clinical outcome compared to that obtained with direct nasal delivery.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Cricetinae , Humans
9.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1970343

ABSTRACT

Background Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188;and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002;and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003;and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485;all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.

10.
J Med Chem ; 65(3): 2558-2570, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1895561

ABSTRACT

Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/therapy , Galactosylceramides/therapeutic use , Peptide Fragments/therapeutic use , SARS-CoV-2/immunology , Vaccines, Conjugate/therapeutic use , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Female , Galactosylceramides/chemistry , Galactosylceramides/immunology , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Interferon-gamma/metabolism , Liposomes/chemistry , Liposomes/immunology , Liposomes/therapeutic use , Mice, Inbred BALB C , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/therapeutic use , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology
11.
Structure ; 30(5): 707-720.e5, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1829569

ABSTRACT

Because of the evolutionary variants of SARS-CoV-2, development of broad-spectrum neutralizing antibodies resilient to virus escape is urgently needed. We identified a group of high-affinity nanobodies from camels immunized with receptor-binding domain (RBD) of SARS-CoV-2 spike protein and resolved the structures of two non-competing nanobodies (NB1A7 and NB1B11) in complex with RBD using X-ray crystallography. The structures show that NB1A7 targets the highly conserved cryptic epitope shared by SARS-CoV-2 variants and some other coronaviruses and blocks ACE2 receptor attachment of the spike protein, and NB1B11 epitope overlaps with the contacting surface of ACE2 and is different from the binding site of NB1A7. These two nanobodies were covalently linked into multivalent and bi-paratopic formats, which significantly improved the avidity and neutralization potency and may further inhibit viral escape. The results contribute to the structure-guided design of antibodies against future variants of SARS-CoV-2 virus to combat coronavirus epidemics and pandemics.


Subject(s)
COVID-19 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Epitopes/metabolism , Humans , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/chemistry
12.
Chem Commun (Camb) ; 58(24): 3925-3928, 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1730326

ABSTRACT

Adjuvants are important components in vaccines to increase the immunogenicity of proteins and induce optimal immunity. In this study, we designed a novel ternary adjuvant system Alum + c-GAMP + poly(I:C) with STING agonist 3,3'-c-GAMP (c-GAMP) and TLR3 agonist poly(I:C) co-adsorbed on the conventional adjuvant aluminum gel (Alum), and further constructed an S1 protein vaccine. Two doses of vaccination with the ternary adjuvant vaccine were sufficient to induce a balanced Th1/Th2 immune response and robust humoral and cellular immunity. Additionally, the ternary adjuvant group had effective neutralizing activity against live virus SARS-CoV-2 and pseudovirus of all variants of concern (alpha, beta, gamma, delta and omicron). These results indicate that the ternary adjuvants have a significant synergistic effect and can rapidly trigger potent immune responses; the combination of the ternary adjuvant system with S1 protein is a promising COVID-19 vaccine candidate.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Alum Compounds , Aluminum , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/pharmacology , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , Poly I
13.
Arch Pediatr ; 29(4): 281-286, 2022 May.
Article in English | MEDLINE | ID: covidwho-1703295

ABSTRACT

AIMS: COVID-19 has led to unprecedented public health measures such as school and university closures across the world. While initial surveys show an increase in anxiety, we have little information on the subjective experience of adolescents and young adults (AYAs). The aims of this study were to understand the lived experience and needs of AYAs related to home confinement and preventive measures due to COVID-19. DEMOGRAPHICS AND SETTINGS: A total of 25 AYAs (13-24 years old) with diverse gender, age, or health conditions, living in Québec (Canada), were interviewed in May 2020, during the COVID-19 home confinement period. METHODOLOGY: Four virtual focus groups were held via a virtual video-conferencing platform (Zoom©). Thematic analysis was conducted. RESULTS: Thematic analysis revealed five main themes: (1) challenges and opportunities related to the experience of home confinement; (2) variable risk perception of COVID-19 infection; (3) development of coping strategies to maintain well-being; (4) need for information and accompaniment; (5) apprehensions related to perceptions of the future. CONCLUSION: AYAs did not feel considered in public health decisions, fostering an increase in anxiety, especially in more vulnerable AYAs living with chronic diseases.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/epidemiology , Chronic Disease , Humans , Pandemics , Qualitative Research , SARS-CoV-2 , Young Adult
14.
Chem Commun (Camb) ; 58(13): 2120-2123, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1639577

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.


Subject(s)
COVID-19/prevention & control , Lipopeptides/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Conjugate/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Formation , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Protein Domains/immunology , RAW 264.7 Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/chemistry
16.
Nat Commun ; 12(1): 4887, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1349665

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is spreading rapidly, which seriously impacts global public health and economy. Thus, developing effective drugs remains urgent. We identify two potent antibodies, nCoVmab1 and nCoVmab2, targeting the SARS-CoV-2 spike protein receptor-binding domain (RBD) with high affinities from a naïve human phage-displayed Fab library. nCoVmab1 and nCoVmab2 neutralize authentic SARS-CoV-2 with picomolar and nanomolar IC50 values, respectively. No detectable defects of nCoVmab1 and nCoVmab2 are found during the preliminary druggability evaluation. nCoVmab1 could reduce viral titer and lung injury when administered prophylactically and therapeutically in human angiotensin-converting enzyme II (hACE2)-transgenic mice. Therefore, phage display platform could be efficiently used for rapid development of neutralizing monoclonal antibodies (nmabs) with clinical potential against emerging infectious diseases. In addition, we determinate epitopes in RBD of these antibodies to elucidate the neutralizing mechanism. We also convert nCoVmab1 and nCoVmab2 to their germline formats for further analysis, which reveals the contribution of somatic hypermutation (SHM) during nCoVmab1 and nCoVmab2 maturation. Our findings not only provide two highly potent nmabs against SARS-CoV-2 as prophylactic and therapeutic candidates, but also give some clues for development of anti-SARS-CoV-2 agents (e.g., drugs and vaccines) targeting the RBD.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Humans , Male , Mice , Mice, Transgenic , Protein Binding , Receptors, Virus/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vero Cells
17.
MedComm (2020) ; 2(1): 101-113, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1121801

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has become a serious burden on global public health. Although therapeutic drugs against COVID-19 have been used in many countries, their efficacy is still limited. We here reported nanobody (Nb) phage display libraries derived from four camels immunized with the SARS-CoV-2 spike receptor-binding domain (RBD), from which 381 Nbs were identified to recognize SARS-CoV-2-RBD. Furthermore, seven Nbs were shown to block interaction of human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2-RBD variants and two Nbs blocked the interaction of human ACE2 with bat-SL-CoV-WIV1-RBD and SARS-CoV-1-RBD. Among these candidates, Nb11-59 exhibited the highest activity against authentic SARS-CoV-2 with 50% neutralizing dose (ND50) of 0.55 µg/ml. Nb11-59 can be produced on large scale in Pichia pastoris, with 20 g/L titer and 99.36% purity. It also showed good stability profile, and nebulization did not impact its stability. Overall, Nb11-59 might be a promising prophylactic and therapeutic molecule against COVID-19, especially through inhalation delivery.

18.
Children (Basel) ; 7(12)2020 Dec 21.
Article in English | MEDLINE | ID: covidwho-1024534

ABSTRACT

To explore factors influencing adolescents and young adults' (AYAs) risk perception of COVID-19 and adherence to public health measures, we conducted a cross-sectional online survey of AYAs (14-22 years old) from Quebec (Canada) recruited through school and community partners in April 2020 during the first wave of the COVID-19 pandemic. The study included 3037 participants (mean age = 17.7 years, 74.6% female). AYAs had higher mean (standard deviation (SD)) risk perception of COVID-19 for their relatives (8.2 (1.9)) than for themselves (5.6 (2.6)) (p < 0.001). Factors associated with higher risk perception included higher disease knowledge (adjusted odds ratio (aOR) 1.06, 95% CI 1.01-1.11), presence of chronic disease (aOR 2.31, 95%CI 1.82-2.93) and use of immunosuppressants (aOR 2.53, 95%CI 1.67-3.87). AYAs with a higher risk perception (aOR 1.06, 95%CI 1.02-1.10) those wishing to help flatten the disease curve (aOR 1.18, 95%CI 1.12-1.25) or to protect their family/friends (aOR 1.14, 95%CI 1.05-1.24) were more likely to engage in preventive behaviors. Self-perceived risk and desire to protect others were significantly associated with adherence to preventive measures among youth. These findings may help inform public health messaging to AYAs in the current and future pandemics.

19.
Children ; 7(12):311, 2020.
Article in English | ScienceDirect | ID: covidwho-984956

ABSTRACT

To explore factors influencing adolescents and young adults’(AYAs) risk perception of COVID-19 and adherence to public health measures, we conducted a cross-sectional online survey of AYAs (14–22 years old) from Quebec (Canada) recruited through school and community partners in April 2020 during the first wave of the COVID-19 pandemic. The study included 3037 participants (mean age = 17.7 years, 74.6% female). AYAs had higher mean (standard deviation (SD)) risk perception of COVID-19 for their relatives (8.2 (1.9)) than for themselves (5.6 (2.6)) (p <0.001). Factors associated with higher risk perception included higher disease knowledge (adjusted odds ratio (aOR) 1.06, 95% CI 1.01–1.11), presence of chronic disease (aOR 2.31, 95%CI 1.82–2.93) and use of immunosuppressants (aOR 2.53, 95%CI 1.67–3.87). AYAs with a higher risk perception (aOR 1.06, 95%CI 1.02–1.10) those wishing to help flatten the disease curve (aOR 1.18, 95%CI 1.12–1.25) or to protect their family/friends (aOR 1.14, 95%CI 1.05–1.24) were more likely to engage in preventive behaviors. Self-perceived risk and desire to protect others were significantly associated with adherence to preventive measures among youth. These findings may help inform public health messaging to AYAs in the current and future pandemics.

20.
Antiviral Res ; 182: 104868, 2020 10.
Article in English | MEDLINE | ID: covidwho-909531

ABSTRACT

COVID-19, which is caused by the emerging human coronavirus SARS-CoV-2, has become a global pandemic that poses a serious threat to human health. To date, no vaccines or specific antiviral drugs have been approved for the treatment of this disease in clinic. Herein, therapeutic antibodies for SARS-CoV-2 were obtained from hyperimmune equine plasma. First, a recombinant SARS-CoV-2 spike protein receptor-binding domain (RBD) was obtained in gram-level quantities through high-cell density fermentation of Chinese hamster ovary cells. Then, the binding of the RBD to the SARS-CoV-2 receptor, human angiotensin-converting enzyme 2, was verified by several biochemical methods. The efficacy of the RBD in triggering antibody response in vivo was subsequently tested in both mice and equines, and the results showed that the RBD triggered high-titer neutralizing antibody production in vivo. Immunoglobulin F(ab')2 fragments were prepared from equine antisera via removal of the Fc region from the immunoglobulins. Finally, a neutralization test with live virus demonstrated that RBD-specific F(ab')2 inhibited SARS-CoV-2 with an EC50 of 0.07 µg/ml and an EC80 of 0.18 µg/ml, showing a potent inhibitory effect on SARS-CoV-2. These results highlight RBD-specific equine immunoglobulin F(ab')2 fragment as a candidate for the treatment of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Receptors, Immunologic/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , COVID-19 , Chlorocebus aethiops , Female , HeLa Cells , Humans , Mice, Inbred BALB C , Neutralization Tests , Pandemics , Protein Binding , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL